Испарение и конденсация

Подписаться на эту рубрику по RSS

29
янв 10

Искусственное вызывание осадков

В настоящее время делается много попыток искусственно воздействовать на явления погоды, влияющие на жизнь и деятельность человека. Управление погодой даже в ограниченных пределах может иметь огромное экономическое значение для человечества. Самой развитой областью исследований в этом направлении сейчас является искусственное вызывание дождя из облаков.

Уже довольно давно известно, что гигроскопические частицы могут вызывать выпадение осадков из облаков, находящихся в воздушных массах, относительная влажность которых составляет значительно менее 100%. Поэтому если каким-либо образом искусственно ввести в облака такие частицы, то можно вызвать выпадение осадков.

Природные ядра конденсации состоят из поднятых ветром частиц почвы, кристаллов морской соли, частиц сажи и вулканического пепла. Все они ускоряют образование дождевых капель, так как усиливают слияние микроскопических облачных капель или оказывают воздействие на них своей гигроскопичностью.

В 1946 г. исследования в области искусственного вызывания осадков начали В. Шефер и И. Лэнгмюр. Они вводили в переохлажденные облака частицы сухого льда, которые понижали температуру окружающего воздуха до —40°С и при этой температуре вызывали самопроизвольное зарождение ледяных кристаллов из водяного пара, содержащегося в этих облаках. Возникавшие кристаллы быстро вырастали за счет еще оставшегося пара, и вскоре из засеянных облаков начинали выпадать осадки.

Впоследствии было установлено, что такое же действие, как сухой лед, производит йодистое серебро, но оно эффективно и при более высоких температурах, а именно до —6°С. Йодистое серебро, как и сухой лед, вызывает быстрый рост ледяных кристаллов в облаках, приводящий к выпадению осадков, йодистое серебро может вводиться в облака с поверхности земли или с самолета, для чего его сначала сжигают, превращая в дым. Восходящие движения воздуха поднимают этот дым в облака, расположенные над местом сжигания кристаллов йодистого серебра (рис. 3-20). С помощью йодистого серебра были достигнуты некоторые успехи также и в искусственном рассеивании туманов. Наилучшие результаты получались при температуре тумана от —6 До 0°С и при отсутствии адвекции.

Однако искусственное вызывание дождя в крупных масштабах пока не удается. Описанные методы еще недостаточно разработаны, и в этой области необходимы дальнейшие исследования. В случае усовершенствования они действительно смогут приобрести важное значение, так как в облаках содержатся колоссальные запасы воды. Например, в 1,6 куб км облака может находиться до 4000 тонн воды.

Искусственное вызывание дождя пока еще не получило значительного развития по ряду причин. Одна из них состоит в том, что сам этот процесс недостаточно изучен. Кроме того, результаты крупномасштабных воздействий на атмосферные процессы пока остаются несколько неопределенными. Много сомнений вызывает вопрос о том, какое влияние искусственный дождь в одном районе может оказать на соседние районы. Что произойдет с запасами воды в некотором районе, если движущиеся к нему облака заранее искусственно обезводить? Какими законодательными и моральными требованиями должны быть ограничены мероприятия по искусственному вызыванию дождя? Эти и большое число других вопросов заставляют многих исследователей основательно пересмотреть свои взгляды на возможные последствия искусственного управления погодой даже и в ограниченных масштабах.

Для рассеивания облаков, а также вызывания осадков из непереохлажденных (теплых) облаков применяется другая методика. Пролетая через кучевые облака, самолет может рассеять их путем разбрызгивания капель воды. В тропических облаках такие капли, сливаясь с каплями самого облака, вырастают до размеров, достаточных для выпадения дождя.

Большой проблемой стали непреднамеренные изменения погоды в результате человеческой деятельности, особенно в промышленных районах. К таким изменениям приводят, в частности, промышленные дымы и другие продукты сжигания топлива в крупных городах. Обширные исследования в Чикаго и его окрестностях указали на довольно неожиданные последствия индустриализации этого района. Повторяемость гроз над Чикаго оказалась на 15% выше, чем в окрестностях. Предполагается, что скопление продуктов сжигания топлива увеличивает количество ядер конденсации в воздухе над Чикаго. Увеличение же количества ядер считается непосредственной причиной увеличения количества осадков. Было, однако, показано, что последнее имеет и еще одно положительное значение. Дело в том, что осадки вымывают часть ядер из атмосферы. Поэтому, например, грозовая деятельность очищающе действует на атмосферу. Не только ядра конденсации, но и другие цримеси вымываются из атмосферы осадками. Конечно, этим проблема борьбы с загрязнением атмосферы не решается и никто не станет утверждать, что очистку воздушного бассейна можно просто предоставить дождям. Но увеличив количество осадков, можно помочь постепенному очищению воздуха.

Для того чтобы достаточно точно оценить, как влияет изменение переменных характеристик атмосферы на климат, необходимы данные наблюдений на широко разветвленной всемирной сети станций. В настоящее время мы имеем обширную информацию о метеорологических явлениях лишь на территории Европы, Азии и Северной Америки, да и эта информация тоже недостаточна. Однако по остальным районам она еще беднее: остаются остро необходимыми данные примерно для 3/4 поверхности нашей планеты.

23
янв 10

Важная роль воды

Вода есть на Земле почти повсюду. Океаны, моря, озера, реки, пруды и другие водоемы занимают около 71 % земной поверхности. Текущая вода постепенно размывает почву и горные породы. Вода, содержащаяся в атмосфере,— единственное вещество, которое может находиться там одновременно во всех трех фазовых состояниях: газообразном (водяной пар), жидком (вода) и твердом (лед).

Физические свойства воды делают ее весьма своеобразным поглотителем лучистой энергии. Главная особенность воды, находящейся на земной поверхности, в частности в океанах, заключается в том, что она избирательно поглощает и преобразует огромное количество лучистой энергии, непрерывно поступающей к Земле.

В атмосферу вода поступает в результате испарения с поверхности водоемов. Она выделяется живыми организмами при процессах дыхания и обмена веществ. Наконец, она является побочным продуктом вулканической деятельности, промышленного производства и окисления различных веществ. Потом содержащийся в атмосфере пар, сконденсировавшись, превращается в воду. Пар конденсируется в тех случаях, когда воздух охлаждается путем теплоотдачи или расширения. Сгущение атмосферного водяного пара может происходить и в форме сублимации. Сублимация — это процесс непосредственного перехода вещества из газообразного состояния в твердое, минуя жидкую фазу. Сублимация может идти и в обратном направлении, т. е. вещество переходит из твердого в газообразное состояние.

Любое изменение фазового состояния требует затраты энергии. Например, на таяние льда затрачивается около 80 кал/г. Эта величина называется теплотой плавления. Такое же количество энергии вода выделяет в атмосферу при замерзании. При температуре 100°С, когда вода переходит из жидкого состояния в парообразное, на каждый грамм воды, участвующей в этом переходе, расходуется 540 калорий тепла. Эта величина называется теплотой испарения. При обратном переходе пара в жидкое состояние высвобождается такое же количество тепла, хоторое называется скрытой теплотой. Скрытая теплота представляет собой то количество энергии, которое содержит вода, находящаяся в атмосфере в парообразном состоянии.

Все возможные изменения состояния воды на Земле заключены в понятие «круговорот воды». Этот круговорот представляет собой некий идеализированный процесс. Одно из звеньев круговорота воды в природе — облака, другое—осадки, средняя годовая сумма которых в целом для всей Земли составляет около 100 см. Звеньями круговорота воды являются также испарение и транспирация.

Фазовые превращения воды в разных районах Земли совершаются с разной интенсивностью, о чем говорит, например, распределение осадков по земному шару. Так, если на всей Земле за год выпадает в среднем примерно 100 см осадков, то на сушу попадает лишь около 1/4 этого количества. В пустынях годовая сумма осадков составляет всего несколько сантиметров: в Долине Смерти (США), например, около 4,3 см, а в пустыне Атакама есть районы, в которых вообще никогда не выпадало заметного количества осадков. В самом же дождливом месте на Земле — на горе Вайалеа-ле, Гавайские острова,— ежегодно отмечают примерно 1600 см осадков.

23
янв 10

Свойства чистой воды

Вода обладает одним из самых высоких значений удельной теплоемкости среди других веществ на Земле. Поэтому водные массы нагреваются и охлаждаются гораздо медленнее, чем суша. В результате более медленного нагревания и охлаждения воды, возникают большие контрасты температуры между водоемами и соседними участками суши.

Тепло, содержащееся в водоемах, в большой мере определяет температуру приводного слоя воздуха. Обычно в течение всего года температура воздуха над водоемом и температура воздуха над прибрежными районами суши сильно различаются.

Количество лучистой энергии, поглощаемое сушей и водоемами, весьма различно. На суше, обладающей большой плотностью, тепло распространяется лишь на незначительную глубину. Океаны же более «прозрачны» для поступающей к ним лучистой энергии. Солнечная радиация за очень короткое время проникает в глубь морской воды на несколько метров. Из наблюдений известно, что в океанах дневной свет распространяется даже на несколько сотен метров вглубь. Однако нас в первую очередь интересует первичное поглощение солнечной радиации, происходящее в верхнем слое воды толщиной несколько метров.

Распространение тепла в глубь океана поддерживается также конвекцией — процессом, не имеющим места в почве. Конвекция обусловливает быстрое перемешивание воды. Масштабы конвекции могут быть самыми разными: от мелких местных вихревых движений воды до огромных, охватывающих целые акватории.

Испарение с поверхности океанов происходит непрерывно и сопровождается таким большим расходом тепла, какого никогда не бывает на суше. Испарение же с почвы изменяется от сезона к сезону и зависит от количества воды, содержащейся в этой почве.

Тепло, накапливаемое в океанах, может в течение всего года передаваться атмосфере и подогревать приводный слой ее. Одновременно происходит и увлажнение этого слоя.

Но значительную часть накопленного тепла океан сохраняет, так как его удельная теплоемкость велика.

23
янв 10

Химические свойства воды

Общеизвестно, что молекула воды состоит из двух атомов водорода и одного атома кислорода. Однако атомы, составляющие ее, расположены весьма своеобразно. Оба атома водорода, окружающие атом кислорода, находятся под углом 105° относительно друг друга. Это делает молекулу воды биполярной. Так происходит потому, что электроны атомов водорода, взаимодействующие с атомом кислорода, придают той стороне молекулы воды, на которой находятся водородные атомы, положительный заряд, тогда как та сторона, на которой лежит атом кислорода, заряжается  отрицательно.

Вследствие биполярности молекулы воды объединяются в крупные группы — противоположные заряды разных сторон молекул создают взаимное притяжение. Между соседними молекулами воды возникает сильная связь, называемая водородной связью. Чтобы разорвать эту связь, необходима весьма большая энергия. Именно поэтому вода имеет большую теплоемкость.

Вследствие биполярности молекул вода имеет более высокую температуру кипения, чем можно было бы ожидать. Если бы не было водородной связи, температура кипения составляла бы —80° С. Тогда в обычных условиях вода не могла бы находиться в жидком состоянии. На самом же деле эта очень устойчивая жидкость принадлежит к числу немногих веществ на нашей планете, которые в самых обычных условиях могут находиться в твердом, жидком и газообразном состоянии. Так, в некоторых облаках возможны одновременно все три   фазы   воды.

Вода также почти идеальный, один из самых универсальных растворителей. За достаточно продолжительное время в ней растворяется больше веществ, чем в каком бы то ни было другом растворителе. Сток воды по поверхности суши ежегодно выносит в моря до 50 миллионов тонн различных веществ.

Такая особенность воды, как расширение при замерзании, отличает ее от большинства других веществ, которые в этих условиях сжимаются. Вода же сжимается при понижении ее температуры тол'.ко до 4°С. При этой температуре молекулы воды «упакованы» плотнее, всего. При дальнейшем понижении температуры воды ее молекулы не могут более уплотняться, расстояние' между ними начинает увеличиваться и вода расширяется. Поэтому плотность льда меньше плотности воды: дистиллированной — приблизительно на 1/9, соленой морской — на 1/7. Более легкий лед плавает по поверхности воды. Можно себе представить, что случилось бы, если бы дело обстояло противоположным образом, т. е. если бы вода в водоемах начинала замерзать от дна. С наступлением зимы озера и другие водоемы постепенно полностью переходили бы в твердое состояние и все живое в них — по крайней мере большинство организмов, живущих в воде,— погибало бы. Мы же знаем, что очень многие живые организмы могут жить под льдом и легко выживают до следующего летнего сезона. Если бы каждую зиму вся вода на Земле замерзала, то вряд ли на ней могла бы зародиться жизнь.

Морская вода значительно отличается от 1 химически чистой воды, что связано со свойствами множества растворенных в ней примесей. Известно не менее 49 химических элементов, содержащихся в морской воде. Приблизительно 35% общего веса морской воды приходится на различные растворенные в ней минералы. Масса веществ, растворенных в морской воде, называется ее соленостью ( в действительности соленость несколько, меньше количества растворенных минералов, однако различие между ними столь мало, что нет надобности здесь на этом останавливаться).

Соленость воды зависит от географических условий, но можно все же сказать, что в среднем она составляет примерно 35 частей растворенного вещества на каждые 1000 частей чистой воды. Этот результат записывается в таком виде: 350/00. Самые распространенные вещества, содержащиеся в морской воде в ионизированном состоянии,— хлориды натрия (NaCl) и калия (КСl), а также сульфат магния (MgS04).

Под влиянием ряда факторов соленость морской воды различна на разных широтах. Например, в тех районах, где впадающие в океан реки приносят сравнительно чистую воду, в частности, в полярных областях, где к тому же и скорость испарения невелика, морская вода быстро разбавляется и соленость ее может снижаться до 33 промилей. В тропических же широтах, где рек меньше, а испарение велико, соленость возрастает до промилей.

Температура поверхности моря на земном шаре колеблется в пределах от —1,6 до 30°С. Значение —1,6°С может на первый взгляд показаться странным, но оно вполне реально и объясняется тем, что растворенные минералы понижают температуру замерзания морской воды. Морская вода не замерзает, пока ее температура не достигнет приблизительно —2°С.

Плотность морской воды также отличается от плотности дистиллированной воды. Масса морской воды в единице объема составляет примерно 1,2 г/куб см, тогда как у дистиллированной воды она равна  1 г/куб см. Плотность морской воды непосредственно зависит от ее солености и косвенно — от ее температуры.

Интенсивное испарение и увеличивающаяся при этом соленость повышают плотность воды сильнее, чем это делает понижение ее температуры. Различие плотности соседних водных масс—одна из главных причин возникновения морских течений. Более плотная, а особенно еще и более холодная вода стремится опускаться на дно водоема.

Температура воды влияет также на ее способность поглощать некоторые газы атмосферы. При высокой температуре из воды выделяются такие газы, как кислород, и поэтому содержание кислорода в теплой воде уменьшается.

23
янв 10

Водяной пар в воздухе

Молекулы жидкости всегда находятся в движении, причем некоторые могут прорываться через поверхность жидкости и уходить в воздух. Молекулы же пара могут возвращаться из воздуха в жидкость. Когда температура жидкости повышается, число покидающих ее молекул становится больше числа возвращающихся, т. е. происходит испарение жидкости. Понижение же температуры замедляет переход молекул жидкости в воздух и вызывает конденсацию пара. Поэтому количество водяного пара, поступающего в воздух, зависит главным образом от температуры воды и от площади водоема, соприкасающейся с воздухом.

Когда водяной пар поступает в воздух, он, как и все другие газы, создает определенное давление, называемое парциальным. Оно выражается в миллибарах или в каких-либо других единицах давления. По мере того как молекулы воды переходят в воздух, давление пара в воздухе увеличивается. Когда достигается равновесие между числом молекул, покидающих воду и возвращающихся в нее, пар становится насыщенным. Если температура воздуха продолжает увеличиваться, то для поддержания насыщенного состояния пара число молекул, поступающих в воздух, также должно увеличиваться, если, конечно, жидкость еще имеется.

Давление пара служит мерой для другой величины, также выражающей количество пара, содержащегося в воздухе, и называемой абсолютной влажностью. Абсолютная влажность представляет собой массу водяного пара, содержащегося в единице объема воздуха. Обычно ее выражают в граммах на кубический метр.

Более распространенной характеристикой содержания пара в воздухе является относительная влажность, значения которой сообщаются в ежедневных сводках погоды. Она представляет собой отношение количества пара, фактически содержащегося в воздухе, к количеству насыщенного пара при данной температуре и выражается в процентах. При относительной влажности, равной 100%, пар становится насыщенным и дальнейшее охлаждение воздуха вызывает конденсацию пара. Температура, при которой пар становится насыщенным, называется точкой росы. Это та температура, при которой обычно начинается конденсация пара. Если воздух охлаждается, но при достижении температуры точки росы и еще более низкой конденсация пара все же еще не начинается, то говорят, что пар становится пересыщенным.

Для характеристики содержания пара в воздухе используется также удельная влажность. Она представляет собой массу водяного пара, приходящуюся на единицу массы сухого воздуха. Обычно ее выражают в граммах пара на 1 кг сухого воздуха.

22
янв 10

Испарение и конденсация

Большая часть водяного пара поступает в атмосферу с поверхности морей и океанов. Особенно это относится к влажным, тропическим районам Земли. В тропических широтах испарение превышает количество выпадающих осадков. В высоких широтах имеет место обратное положение. В целом же по всему земному шару испарение и количество осадков примерно одинаковы.

Испарение регулируется некоторыми физическими свойствами местности, в частности, температурой поверхности воды в крупных водоемах и преобладающей здесь скоростью ветра. Когда над водной поверхностью дует ветер, он относит в сторону увлажнившийся воздух и заменяет его свежим, более сухим. Чем сильнее ветер в данном районе, тем быстрее меняется воздух и тем интенсивнее идет испарение.

Конденсируется водяной пар легче всего тогда, когда относительная влажность воздуха достигает 100%- Если в ночные часы поверхность Земли и наземных предметов выхолаживается путем теплопроводности, то на них может начаться конденсация водяного пара из воздуха (осаждение). Поэтому на таких поверхностях ночью выпадает роса. Однако появление капель росы может усиливаться, если в атмосфере есть мельчайшие частички различных примесей. При отсутствии таких «ядер конденсации», т. е. в очень чистом воздухе, относительная влажность может достигать нескольких сотен процентов.

Если же ядра конденсации в воздухе есть, то конденсация может начаться даже при относительной влажности менее 100%. Ядра конденсации способствуют образованию капель воды. Это объясняется тем, что некоторые ядра гигроскопичны, т. е. имеют химическое сродство* с водой.

Такими ядрами могут быть, в частности, частички оолей, частицы пыли, сажи, дыма, вулканического пепла, частицы, выбрасываемые в воздух промышленностью.

Вопреки широко распространенному, но все же неправильному представлению, конденсация водяного пара в атмосфере далеко не всегда заканчивается выпадением осадков.

В каждый момент любого среднего дня до 50% небосвода над нашей планетой покрывают облака, но лишь из очень небольшой части этих облаков и в очень немногих районах выпадают осадки.

22
янв 10

Образование осадков

Образование частиц осадков, правильнее называемых гидрометеорами, представляет собой весьма сложный процесс. Различные исследователи предлагают несколько теорий, пытающихся объяснить этот процесс.

Часто думают, что при температуре 0°С вода обязательно переходит в твердое состояние. Это отнюдь не так! Чистая вода действительно обычно замерзает при температуре 0°С, однако температура эта характеризует все же лишь то состояние, при котором лед начинает таять. В атмосфере же температура воздуха часто опускается значительно ниже 0°С, а водяной пар остается паром и не переходит в лед. Чистая вода тоже может охлаждаться до температуры ниже 0°С и не замерзать, может оставаться и парообразной при столь низкой температуре. Водяной пар и вода при температуре ниже точки таяния льда и вплоть до — 40°С могут переохлаждаться и сами по себе не переходить в кристаллы льда. Только при температуре —40°С вся вода наконец переходит в ледяные кристаллы.

Однако переохлажденный водяной пар способен легко переходить в лед, если имеется какая-либо «подложка», на которой он может образовать пленку льда. Этому быстрому образованию льда также способствуют ядра конденсации. Летчики обнаружили, что водяной пар нередко намерзает на самолетах, пролетающих через переохлажденный воздух. Автомобили, двигающиеся в таком воздухе, тоже часто покрываются коркой льда.

Самой распространенной теорией, объясняющей образование капель дождя, является теория Бержерона. Хотя теория эта со временем изменилась, все же в основе ее лежат представления Бержерона. Бержерон предположил, что ледяные кристаллы, образующиеся в переохлажденных облаках, сами служат ядрами конденсации для водяного пара. Водяной пар конденсируется на них быстрее, чем на любых - других ядрах. Поэтому переохлажденные облака некоторое время могут быть смешанными, т. е. содержать одновременно переохлажденную воду, лед и водяной пар.

Ледяные кристаллы постепенно сублимируют на себя окружающий водяной пар. Когда почти весь этот пар окажется сублимированным, образуется некое снегообразное вещество. Этот снег начинает падать и, встретив по пути, в нижних слоях атмосферы, более теплый воздух, тает— так образуется дождь.

Теория Бержерона содержит несколько удачных моментов. Но все же она не отвечает полностью на вопрос о том, каким образом возникает дождь. Например, дождь, который випадает из теплых тропических облаков, отнюдь не являющихся переохлажденными. По-видимому, в таких облаках мелкие капельки в результате столкновения друг с другом и слияния вырастают до размера крупных дождевых капель, становятся неустойчивыми и начинают падать. Падая, они разрушаются и образуют новые мелкие дождевые капли.

При микроскопических исследованиях в осадке от испарившихся дождевых капель обнаружено большое число ядер конденсации, которые   играют   очень   важную   роль в процессе образования осадков. Число ядер конденсации над открытым морем может составлять менее 100 в кубическом сантиметре воздуха, в то время как над промышленными центрами —несколько сотен тысяч, что и вызывает здесь увеличение количества осадков.