Динамика атмосферы

Подписаться на эту рубрику по RSS

27
янв 10

Фён и чинук

Орографические особенности горных районов могут вызывать возникновение еще одного вида ветра. Воздух, движущийся по земной поверхности, встретив на своем пути горы, вынужден подниматься по ним и при этом адиабатически охлаждаться. Так происходит, например, при встрече индийского летнего муссона с Гималаями. В этом случае на наветренных склонах гор выпадают осадки.

К тому времени, когда воздух переваливает через вершины горного хребта     и     начинает     опускаться по подветренной его стороне, он успевает потерять значительную часть содержавшегося в нем ранее водяного пара, получив при этом скрытую в паре теплоту конденсации. Далее он нагревается вследствие сжатия, которое происходит, когда он опускается по подветренному склону. Таким образом, воздух на подветренных склонах оказывается очень теплым и сухим. Подветренные склоны попадают в так называемую дождевую тень, и климат здесь становится до некоторой степени похожим на климат пустынь.

Сухой и теплый ветер такого происхождения в США называется чинук. Он часто бывает в Скалистых горах и в горах Сьерра-Невада. Знаменитая Долина Смерти находится на подветренной стороне гор Сьерра-Невада. В Европе такой ветер называют феном.

Когда воздух опускается по подветренным склонам гор, в нем развивается сильная турбулентность. Сухой и теплый воздух интенсивно испаряет снежный покров и воду, содержащуюся в почве. Заимствованное у индейцев название ветра — чинук — можно перевести как «снегоед».

Поднимающийся по наветренным склонам, насыщенный паром воздух охлаждается приблизительно на 0,5°С/100 м. Увеличение же его температуры при опускании на подветренной стороне составляет уже 1°С/100 м. Поэтому опускающийся воздух всегда суше и теплее, чем поднимающийся. Он вызывает быстрое испарение облаков, снега, почвы, водоемов, растительного покрова. За одни сутки под действием такого ветра стаивает снежный покров высотой  несколько  десятков сантиметров, а температура воздуха иногда менее чем за 12 часов повышается на 25° С. При этом усиливающийся сухой и теплый ветер иногда вызывает у людей так называемую «фёновую ''болезнь». В сущности, это не настоящая болезнь, а лишь результат резкой смены окружающих условий.

25
янв 10

Силы влияющие на движение воздуха

Движение воздуха под действием силы барического градиента стремятся развиваться прямолинейно, вдоль этого градиента. При этом воздух движется из области большего давления к области меньшего давления, но с отклонением, вызванным действием силы Кориолиса.

Действительное движение воздуха —результат равновесия трех сил: силы градиента давления, силы Кориолиса и центробежной силы. Центробежная сила отражает стремление воздуха, движущегося по криволинейной траектории, удаляться по прямой линии в направлении от центра кривизны. Когда три названные силы полностью уравновешивают друг друга, движение воздуха именуют градиентным ветром. Скорость такого ветра определяется величиной вызывающего его градиента давления.

Очень часто, особенно на больших высотах, изобары проходят прямолинейно и параллельно друг другу. При такой их конфигурации центробежная сила либо отсутствует, либо столь мала, что ею можно пренебречь. Так возникает геострофический ветер — прямолинейное движение воздуха вдоль изобар, т. е. перпендикулярное к направлению градиента   давления. При геострофическом ветре сила Кориолиса точно уравновешивает силу градиента давления и воздух движется так, будто на него не действуют никакие силы.

Однако вблизи земной поверхности действует еще один фактор. До высоты примерно 1 км скорость ветра несколько уменьшается силой трения, которая направлена в сторону, противоположную направлению движения воздуха. При уменьшении скорости ветра из-за силы трения уменьшается и сила Кориолиса, действующая на движущийся воздух. Это приводит к тому, что ветер начинает дуть в направлении, пересекающем изобары, а не вдоль них, как бывает при отсутствии трения. Поэтому, рассматривая карты погоды, легко заметить, что ветер направлен под некоторым углом к изобарам. Этот угол в зависимости от шероховатости участка земной поверхности меняется в широких пределах. Над открытым морем угол между направлением ветра и изобарами довольно мал и составляет примерно 10°. Над сушей он около 20—30°, но может достигать и 35°.

25
янв 10

Муссон

Аналогично бризу муссон представляет собой ветер, дующий с суши или моря, но уже в масштабе целых континентов и притом меняющий свое направление не при смене дня и ночи, а при смене времен года. Муссон имеет, большое значение для сельского хозяйства, так как он приводит к чередованию дождливых и засушливых периодов, вызванному сменой направления воздушных течений.

Муссоны возникают в прибрежных районах тропических морей, где из-за близости моря и суши температуры воздуха сильно различаются. Зимой над континентами, когда они выхолаживаются и изобарические поверхности над ними опускаются, преобладают области повышенного давления. Поэтому воздух начинает двигаться с суши в сторону моря, а на высотах перемещается с моря на сушу. Поскольку зимние ветры зарождаются над континентом, то это ветры сухие и в то же время холодные и, следовательно, дождь здесь зимой выпадает редко.

Летом суша нагревается больше, чем водоемы. Изобарические поверхности поднимаются, вследствие чего над континентом формируется область   пониженного давления у поверхности Земли и повышенного давления на высотах. Поэтому ветер в нижнем слое атмосферы в это время года дует с моря на сушу. Соответствующее ему перемещение воздуха на высотах происходит с суши на море. Летние приземные ветры всегда теплые и влажные.

Летние муссоны хорошо известны,   в   частности,   в Южной   Азии  и в Индии. В Индии летний муссон, дующий с Индийского океана, проходит через весь полуостров Индостан и достигает Гималаев. Вынужденный подниматься по склонам гор, воздух адиабатически охлаждается и теряет огромное количество влаги. С июня по ноябрь в Индии выпадает от 4000 до 8000 мм осадков. На северо-востоке Индии, где склоны гор имеют наибольшую крутизну, подъем воздуха происходит особенно интенсивно, и в период летнего муссона здесь выпадает до 10 000 мм осадков. Эту цифру интересно сравнить, например, с количеством осадков, выпадающих за целый год в районе Нью-Йорка, которое составляет в среднем лишь около 1000 мм.

Сезонная смена ветров типа муссона наблюдается также в некоторых восточных и центральных штатах США. Тропические районы Южной Атлантики и Мексиканский залив в летние месяцы служат очагом теплых и влажных ветров.

24
янв 10

Магнитное поле Земли

Наша планета Представляет собой, если можно так выразиться, гигантскую динамо-машину. Земной шар окружен сильным магнитным полем. Силовые линии этого поля сходятся примерно к географическим полюсам

Земли, а между полюсами проходят с севера на юг. При такой ориентации поля силовые линии оказываются подобными силовым линиям постоянного стержневого магнита. Напряженность магнитного поля уменьшается с высотой и изменяется во времени. Магнитные полюса Земли расположены на расстоянии около 400 км от ее географических полюсов. Магнитное поле Земли создает одну очень важную особенность околоземного пространства, имеющую огромное значение для существования жизни на Земле. Этой особенностью являются радиационные пояса Земли.

24
янв 10

Радиационные пояса Земли

Кроме огромного количества лучистой энергии, в атмосферу Земли приходят от Солнца также протоны, заряженные положительно, и электроны, несущие отрицательный электрический заряд. Оба вида частиц взаимодействуют с газами атмосферы и коренным образом изменяют их свойства. Результатом бомбардировки    атмосферы   заряженными частицами является ионизация газов атмосферы. На заряженные частицы, или солнечные космические лучи, несущие очень большую энергию, на подходе к Земле начинает влиять ее магнитное поле.

Характер влияния магнитного поля Земли на заряженные частицы, поступающие в атмосферу, был выяснен во время запуска первых спутников в верхнюю атмосферу. В 1958 г. в магнитное поле Земли, называемое также ее магнитосферой, был запущен спутник Экоплорер-3. С помощью этого спутника был открыт внутренний радиационный пояс Земли. Он представляет собой целую систему поясов, окружающих Землю, существование которых было теоретически предсказано Ван Алленом.

В том же 1958 г. советские ученые открыли так называемый внешний радиационный пояс Земли.

Радиационные пояса имеют форму колец, опоясывающих Землю. По существу они представляют собой области повышенной концентрации протонов и электронов, «захваченных» магнитосферой Земли. Первое такое повышение   концентрации отмечается на высотах 650—800 км. Далее концентрация заряженных частиц уменьшается, а затем снова возрастает, достигая еще одного максимума на. высоте несколько тысяч километров. Интенсивность радиационного пояса начинает резко уменьшаться лишь с высоты около 16 000 км.

Можно выделить Два главных радиационных пояса. Первый простирается до высоты около 4800 км, второй же до высоты не менее 16 000 км. Существование обоих радиационных поясов многократно подтвердили спутниковые исследования, проведенные уже после полета Эксплорера-3.

Радиационные пояса возникают в результате того, что магнитное поле Земли захватывает заряженные частицы. На пути от Солнца к Земле эти частицы попадают в магнитосферу и, следуя вдоль магнитных силовых линий, начинают двигаться по винтообразным траекториям. Поскольку частицы при этом не могут пересекать магнитные силовые линии, они перемещаются в основном от полюса к полюсу. Двигаясь вокруг Земли, электроны несколько отклоняются   к   востоку,   а   протоны к западу. Магнитные поля Солнца и земной атмосферы порождают и другие интересные метеорологические явления, причем некоторые из них для нас гораздо более очевидны, чем существование радиационных поясов. Тем не менее радиационные пояса — одна из самых важных особенностей нашей планеты. Дело в том, что радиационные пояса, улавливая заряженные частицы, не пропускают их к земной поверхности. Если бы эти частицы достигали земной поверхности, общий уровень радиации на поверхности нашей планеты был бы в несколько раз выше, чем теперь. В результате этого на Земле не могла бы существовать жизнь в современных ее формах.

24
янв 10

Полярные сияния

Протоны, излучаемые Солнцем во время вспышек, захватываются магнитным полем Земли. При этом атомы атмосферных газов, взаимодействуя с протонами, возбуждаются. Возбуждение атомов происходит в результате поступления в них дополнительной энергии, которая затем снова излучается — обычно в виде света.

Свет, излучаемый возбужденными атомами атмосферных газов, наблюдатель воспринимает как полярное сияние. Таким образом, полярные сияния, наблюдающиеся в северном и южном полушариях Земли, представляют собой световые явления, вызванные ионизацией газов атмосферы.

В северном полушарии полярные сияния чаще возникают в поясе 65—70° с. ш., на севере Норвегии, в Гренландии, а также в Сибири и на Аляске. Самые интенсивные полярные сияния бывают в толще атмосферы до 480 км. В южном полушарии полярные сияния чаще наблюдаются в Антарктике.

Полярное сияние состоит из множества разноцветных лучей. Когда возбужденные электроны, т. е. поднявшиеся до более высоких орбит, окружающих ядро атома, возвращаются на прежние орбиты, возникает свечение, причем у разных атомов свечение различного цвета. Обычно атомы кислорода дают красные и желтые лучи, атомы азота — оранжевые и фиолетовые. Хотя и кажется, будто полярное сияние начинается от самой поверхности Земли, на самом деле оно чаще наблюдается на высотах от 80 до 960 километров.

Полярные сияния возникают очень часто, но интенсивнее они в периоды повышенной солнечной активности, что совпадает с большим числом пятен на поверхности Солнца. В земную атмосферу тогда от Солнца поступает повышенное количество заряженных частиц и сопровождается увеличением числа и интенсивности полярных сияний.

Существует много разных форм полярных сияний: в виде полос, лучей, дуг, драпри и др.

23
янв 10

Молния

Наиболее известное электрическое явление в атмосфере — молния. Она возникает во время грозы, когда в соседних частях облака или на участках земной поверхности, граничащих с заряженными областями атмосферы, накапливаются электрические заряды. Природа таких зарядов точно еще неизвестна, но, по-видимому, они чаще всего образуются тогда, когда внутри облака создаются сильные восходящие потоки воздуха.

Молния проскакивает как электрический разряд между областью с положительным зарядом и областью с отрицательным зарядом. Одна широко распространенная теория объясняет появление ее следующим образом. В облаках при разбрызгивании крупных капель воды или разрушении кристаллов льда мелкие капельки заряжаются отрицательно, т. е. приобретают избыточные электроны, а более крупные капли — положительно. По мере того как мелкие отрицательно заряженные капельки группируются в центре облака, а более крупные, положительно заряженные, собираются ближе к наружным его. частям, в облаке накапливается электрический заряд.

По другой теории, положительные заряды образуются на ледяных кристаллах в верхней части облака, тогда как в нижней его части вокруг положительно заряженных частиц группируются частицы с отрицательным зарядом. Обычно Земля по отношению к атмосфере заряжена отрицательно; тем не менее отрицательно заряженные части облаков, двигающихся над земной поверхностью, индуцируют на ней отдельные участки с положительным зарядом.

Поскольку воздух — плохой проводник электричества, электрический ток между этими разноименно заряженными   областями   возникает не сразу, а постепенно, по мере того как между облаком и Землей создается очень большая разность потенциалов. Молния же развивается лишь тогда, когда эта разность потенциалов оказывается достаточной для преодоления электрического сопротивления воздуха.

Молния представляет собой искровой электрический разряд между соседними частями облака или между отрицательно заряженной Землей и положительно заряженной центральной частью облака. Хотя большинство молний и возникает внутри облаков, но и на земной поверхности иногда наблюдается стенание заряда с выступающих (острых) предметов; это явление может приносить большой ущерб и быть весьма опасным для объектов, находящихся вблизи таких предметов.

Молния развивается следующим образом. Первый отрицательный заряд — лидер — движется в положительно заряженную область. По проложенному пути проходят несколько более слабых, ступенчатых лидеров. Затем развивается главный канал молнии, по которому переносится положительный заряд — обратный разряд. Главный разряд движется в сторону отрицательно заряженной области, и основная часть электричества протекает по этому «мосту», обусловливая развитие главного канала.

Таким образом, вопреки широко распространенному мнению, молния может не только дважды ударить в одно и то же место, но и сделать это даже несколько раз в пределах одного разряда.

Гром, сопровождающий молнию, возникает в результате выделения огромной энергии во время электрического разряда. При прохождении молнии воздух нагревается до 10 00С°С. Внезапное расширение и затем сжатие воздуха создает раскаты грома, которые мы слышим вслед за молнией.

Тихие электрические разряды в воздухе дают пищу для создания многих легенд. Так, шаровая молния, представляющая собой электрический разряд сферической формы, могла послужить поводом для некоторых сообщений о летающих блюдцах. Двигаясь в воздухе, шаровая молния иногда издает свистящий звук, что усиливает впечатление о ее якобы сверхестественной природе.

Различные формы молнии называются по-разному. Линейная молния представляет собой единичный разряд, ударяющий в Землю. Ленточная молния имеет вид полосы, тянущейся от одного облака к другому. Ветвистая молния имеет много ответвлений от основного канала, а четочная молния образуется из обычной линейной молнии, когда она разрывается на отдельные звенья. Зарница, обычно не сопровождающаяся громом, представляет собой обыкновенное отражение далекой молнии на облачном покрове. Гром при этом не слышен потому, что он возникает на очень большом расстоянии от наблюдателя, который тем не менее может видеть молнию. Однако происхождение и действие этой молнии совершенно такое же, как и у всех других электрических разрядов в атмосфере.

07
янв 10

Динамика атмосферы

Как мы уже видели, атмосфера не статична. Различия в степени нагревания воздуха, наблюдаемые даже в незначительных районах, способствуют возникновению перепадов давления в воздушных массах и приводят их в движение. Огромные массы воздуха перемещаются в атмосфере и вблизи земной поверхности, и на больших высотах.

Изучение атмосферы показывает, что в отдельных районах земного шара ветры сравнительно устойчивые или хотя бы преобладающие. Так, в некоторых районах ветер может дуть в одном направлении в течение почти всего года. Несмотря на видимую простоту такой картины, механизм возникновения даже устойчивых ветров сложный. Многие особенности циркуляции атмосферы еще не изучены, и это затрудняет предсказание погоды на долгий срок.

Циркуляционные движения воздуха, которые' мы наблюдаем в атмосфере, создает солнечная радиация, получаемая Землей. Если бы не было циркуляции атмосферы, экваториальные районы были бы еще более жаркими, а полярные — еще более холодными, чем теперь. Перенос тепла от экватора к полюсам происходил бы в этом случае только путем теплопроводности, т. е. был бы очень медленным. В действительности тепло в атмосфере переносится с помощью целого ряда циркуляционных „ячеек" или „поясов", причем гораздо интенсивнее, чем только за счет теплопроводности. Сама циркуляция атмосферы испытывает влияние вращения Земли вокруг своей оси и воздействие термического режима атмосферы.

Обычно движения воздуха вызываются  изменением его температуры. Хотя в развитии движений часто принимает большое участие сила тяжести, но поддерживаются они в основном различиями температуры. Движения воздуха переносят тепло из одних районов в другие, перераспределяют водяной пар между этими районами. Однако воздушные течения не являются просто переносом теплого воздуха в более холодные области Земли. Температура воздуха в свою очередь изменяется от района к району вследствие различного поглощения солнечной радиации разными участками земной поверхности. По мере поглощения радиации воздухом тепловая энергия при участии силы тяжести переходит в кинетическую энергию движений.

Исследуя особенности погоды на Земле, ученые постепенно находят ключ к разгадке ее тайн. Таким ключом является циркуляция атмосферы, осуществляемая ее ячейками.

07
янв 10

Сила Кориолиса

Движения воздуха на земной поверхности не обязательно прямолинейны. Воздух, как и любой другой предмет, движущийся, по Земле, испытывает влияние вращения Земли. В то время как предмет .двигается прямолинейно по поверхности нашей вращающейся планеты, его траектория как бы отклоняется от прямолинейной и становится криволинейной по отношению к вращающейся Земле. Это видимое отклонение движения вызвано действием силы Кориолиса, впервые описанной математически французским физиком Г. Кориолисом в XIX в.

В северном полушарии движущееся тело отклоняется вправо от направления первоначального движения, а в южном полушарии — влево. Следует заметить, что сила, заставляющая предмет отклоняться, не действительная, а инерционная, т. е. имеет как бы мнимый характер. Это значит, что ч>на не приложена к телу извне н появляется лишь тогда, когда тело начинает двигаться под действием других сил. Видимое отклонение тела от прямолинейного направления движения зависит от широты места и от скорости движения. Если бы не было силы Кориолиса, предметы двигались бы по земной поверхности прямолинейно. Действие силы Кориолиса можно заметить также в поведении морских течений.

Земля вращается с запада на восток с постоянной угловой скоростью. Но это вращение не вызывает изменения траектории объектов, движущихся по земной поверхности вдоль широтных кругов. Если же предмет — например, воздушная масса — движется по земной поверхности на север или на юг, наблюдатель, находящийся в начальной точке этого движения, заметит, что предмет постепенно отклоняется от прямолинейной траектории. В северном полушарии наблюдатель, стоящий спиной к ветру, заметит, что ветер поворачивает вправо, в южном полушарии ветер отклонится влево.

Сила Кориолиса появляется в результате вращения Земли. Но для наблюдателя, находящегося на Земле, поскольку он не замечает ее вращения, единственным заметным следствием этого вращения служит отклонение предметов, движущихся на земной поверхности, от прямолинейной траектории движения. (Утверждение о том, что мы не замечаем непосредственного вращения Земли вокруг своей оси, в настоящее время звучит несколько банально, но, чтобы разбить представление о неподвижной Земле и вращающейся вокруг нее вселенной, ученым понадобились тысячелетия.)

Если предмет движется в меридиональном направлении, например на север, он пересекает ряд широтных кругов, имеющих последовательно уменьшающиеся радиусы. Поэтому скорость вращательного движения Земли с запада на восток в каждой точке пересечения этим предметом широтных кругов становится меньше, чем вращательная скорость рассматриваемого предмета. Иначе говоря, вращательная скорость предмета больше, чем скорость каждой точки той широты, которую предмет проходит в данный момент. В связи с этим предмет отклоняется от направления своего движения вправо. Двигаясь с севера на юг, тот же предмет пересекает постепенно увеличивающиеся широтные круги, поэтому его вращательная скорость меньше скорости вращения Земли и он отстает от нее, а для наблюдателя, расположившегося лицом к югу, движущийся предмет все равно будет отклоняться вправо.

05
янв 10

Барический закон ветра

Причиной возникновения ветра служат различия давления в разных точках земной поверхности. Наблюдатель, обратившийся лицом в ту сторону, куда дует ветер, может, учитывая действие силы Кориолиса, определить местоположение ближайших областей повышенного и пониженного давления. Соотношение между распределением давления и направлением ветра определил X. Бейс-Баллот в 1857 г. Это соотношение можно кратко выразить следующим образом: если в северном полушарии встать спиной к ветру, область высокого давления будет находиться справа, а область низкого давления — слева. Иными словами, низкое давление расположено слева от направления воздушного потока,   а    высокое   давление справа. В южном полушарии имеет место противоположное соотношение.